ДИНАМИКА: ДИНАМИКА - definition. What is ДИНАМИКА: ДИНАМИКА
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Молекулярная динамика; Классическая молекулярная динамика

ДИНАМИКА: ДИНАМИКА      
К статье ДИНАМИКА
Динамика изучает тела, находящиеся под воздействием неуравновешенных внешних сил, т.е. тела, характер движения которых изменяется. Поскольку равновесие означает равенство нулю равнодействующей всех сил, приложенных к телу, динамика, очевидно, имеет дело с силами, равнодействующая которых не равна нулю. Английский физик и математик И. Ньютон (1643-1727) сформулировал три закона движения, которым подчиняются тела, движущиеся под действием неуравновешенных сил, и за этими законами навсегда закрепилось его имя.
Первый закон Ньютона. Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения, пока неуравновешенные внешние силы не заставят его изменить это состояние. Поскольку состояние покоя, как и состояние равномерного и прямолинейного движения, соответствует равновесию, из первого закона Ньютона следует, что тело, находящееся в равновесии, остается в равновесии, пока его не выведут из этого состояния внешние силы.
Инерция. Если для того, чтобы изменить состояние покоя или равномерного и прямолинейного движения, нужна внешняя сила, то, очевидно, что-то противодействует такому изменению. Свойственная всем телам способность сопротивляться изменению состояния покоя или движения называется инертностью или инерцией. Когда приходится толкать автомобиль, то вначале нужно больше усилий, чтобы стронуть его с места, чем потом - чтобы поддерживать его качение. Здесь инерция проявляется двояким образом. Во-первых, как сопротивление переходу из состояния покоя в состояние движения. Во-вторых, если дорога ровная и гладкая, то как стремление катящегося по ней автомобиля сохранить свое состояние движения. В такой ситуации всякий может сам ощутить инерцию автомобиля, попробовав его остановить. Для этого потребуется гораздо больше усилий, чем для поддержания движения.
Второй закон Ньютона. Всякое тело, на которое действует постоянная сила, движется с ускорением, пропорциональным силе и обратно пропорциональным массе тела. Самый обычный пример второго закона Ньютона - падение какого-либо тела на землю. Движение в направлении к земле вызывается силой гравитационного притяжения, которая при малой высоте падения практически постоянна. Поэтому за каждую секунду падения тела его скорость увеличивается на 9,8 м/с. Таким образом, падающее тело движется с ускорением, равным 9,8 м/с2.
Второй закон Ньютона записывается в виде алгебраического соотношения F = ma, где F - сила, приложенная к телу, m - масса тела и a - ускорение, вызываемое силой F.
Импульс (количество движения). Количеством движения тела называется произведение его массы m на его скорость v, т.е. величина mv. Количество движения одинаково у автомобиля массой 1 т, мчащегося со скоростью 100 км/ч, и у 2-тонного грузовика, едущего в том же направлении со скоростью 50 км/ч. Поскольку ускорение есть изменение скорости за малое время t, второй закон Ньютона можно переписать в виде
mv = Ft.
Произведение силы F на (малое) время ее действия t ранее называлось импульсом силы. Поэтому количество движения в настоящее время называют импульсом.
Для импульса (количества движения) справедлив закон сохранения: при столкновении двух или нескольких тел их полный (суммарный) импульс не изменяется. Например, при забивании гвоздя молотком полный импульс молотка и гвоздя после удара равен полному импульсу молотка до удара (поскольку импульс гвоздя до удара был равен нулю).
Третий закон Ньютона. Для всякой силы действия имеется равная, но противоположно направленная сила противодействия. Иначе говоря, всякий раз, когда одно тело действует с какой-либо силой на другое, последнее тоже действует на него с такой же по величине, но противоположно направленной силой. Примером может служить отдача винтовки при выстреле. Винтовка действует на пулю с силой, направленной вперед, а пуля на винтовку - с силой, направленной назад. В результате пуля летит вперед, а винтовка отдает в плечо стрелку. Если силу, приложенную к пуле, считать действием, то отдача будет противодействием (реакцией). Другой пример к третьему закону - реактивное движение ракеты. Здесь действием считается истечение струи газов из сопла двигателя, а противодействием (реакцией) - движение ракеты в направлении, противоположном движению газов.
Центростремительная сила. Когда вращают мяч на бечевке (рис. 5), бечевка тянет его в сторону центра вращения. Сила, направленная к центру вращения, называется центростремительной. Инерция мяча (его стремление продолжать в каждый момент движение по прямой линии) заставляет бечевку натягиваться. Поскольку мяч продолжает вращаться по окружности, его инерция создает равную, но противоположно направленную, так называемую центробежную силу.
Если мяч движется по окружности с постоянной скоростью, то может показаться, что он находится в равновесии относительно центра окружности. Но это неверно. На самом деле мяч приобретает ускорение, направленное к центру вращения, хотя и остается все время на одном и том же расстоянии от центра. Этот кажущийся парадокс поясняется рис. 6. Здесь кривая AB - часть круговой траектории мяча, а прямая AC - касательная (к окружности), по которой полетел бы мяч, если бы бечевка лопнула и он двигался по инерции. Длина отрезков s, t, u и w, соединяющих дугу и прямую, увеличивается в направлении движения. Чтобы мяч продолжал двигаться по дуге окружности, некая непрерывно действующая сила F должна приводить его в движение с возрастающей скоростью. Необходимое ускорение сообщает ему центростремительная сила. См. также МАШИНЫ И МЕХАНИЗМЫ; МЕХАНИКА.
Системная динамика         
  • Динамическая диаграмма «Вывод на рынок нового продукта»
НАПРАВЛЕНИЕ В ИЗУЧЕНИИ СЛОЖНЫХ СИСТЕМ
Динамика систем; Системодинамика
Системная динамика — направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особое внимание уделяется компьютерному моделированию таких систем.
ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
и, мн. нет, ж.
1. Раздел механики, изучающий движение тел в зависимости от действующих на них сил.||Ср. КИНЕМАТИКА, КИНЕТИКА, СТАТИКА.
2. Состояние движения, ход развития какого-нибудь явления, процесса. Д. экономического развития стра-ны. Динамический - относящийся к динамике.
3. Движение, действие, развитие. Исследовать деятельность сердца в динамике.

ويكيبيديا

Метод классической молекулярной динамики

Метод молекулярной динамики (метод МД) — метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

أمثلة من مجموعة نصية لـ٪ 1
1. В рамках первой группы критериев оцениваются: опыт работы компании на рынке персонал компании спектр предоставляемых УК услуг клиентская база компании и ее динамика репутация компании основные финансовые показатели и их динамика динамика доли компании на рынке по всем направлениям взаимоотношения с клиентурой непосредственно инвестиционный процесс В рамках второй группы критериев оценивается риск-менеджмент компании, его: организационная составляющая количественная составляющая контрольная составляющая В рамках третьей группы критериев оценивается эффективность управления: активами ПИФ пенсионными резервами НПФ пенсионными накоплениями НПФ и ПФР активами, переданными в ИДУ ----------------- С другой стороны, при аутсорсинге услуг возникает несколько проблем.
What is ДИНАМИКА: ДИНАМИКА - definition